Algebraic inequality with trigometric variations.
https://www.linkedin.com/feed/update/urn:li:activity:6555020905666482176
Let x,y,z > 0 such that x + y + z = 1. Show that

>(1-x) ‘/3yz(1 -y -2) 24 /0z.
Solution by Arkady Alt, San Jose,California, USA.
After homogenization inequality of the problem becomes

20 +2) 3z +x)(x+y) Z4x+y+2) J(e+y+2)xyz.

Let ABC be a triangle with side lengths @ := y +z,b :=z+x,c == x +,
semiperimeter s = x+y +z, area F = [(x +y + z)xyzand circumradius R .

Then (1)= a‘/3(s - b)(s —c)bc > 4sF <
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Since e —sing and R = 4cos 5 " COS 5+ COS then

latter inequality becomes Zsm > Hcos— < Y cosa > 4 Hsma,

| .. n—B _ = C
where a = > P = 5 Y= T

Since a,B,y > 0and a + B+ vy = n then a, B,y can be considered as angle
of some triangle with side lengths, semiperimeter, circumradius and inradius
we, for convenience, will denote respectively, via a,b,c,s,R and r

(don’t mix these notations with used above for the original triangle)
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Remark.

Thus original algebraic inequality has the following different equivalent

geometric-trigonometric interpretations:
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